Mikroskopische Verfahren bieten für die Kunststoffanalytik sowohl im Rahmen von Forschungs- und Entwicklungstätigkeiten, aber insbesondere auch in Bereichen der Schadensanalyse oder Qualitätssicherung zielführende Untersuchungsmöglichkeiten. Hierzu zählen unter anderem:
Die hierzu am IKV verfügbaren, mikroskopischen Präparations- und Analyseverfahren decken die gesamte, für die Kunststoffanalytik relevante Bandbreite ab, um schnell und zuverlässig aussagekräftige Ergebnisse zu erzielen. Einer geeigneten Probenpräparation kommt dabei eine zentrale Bedeutung zu. Nicht zuletzt durch das tägliche Mitwirken an öffentlichen Forschungsprojekten und die Bearbeitung von unzähligen Fragestellungen aus der Industrie, besteht ein breites Wissensfundament zur schnellen Erzielung stichhaltiger und aussagekräftiger Untersuchungsergebnisse.
Die präzise Identifizierung eines Materials gilt in vielen praktischen Bereichen und Anwendungen als Grundlage für die nachgeschalteten Arbeitsschritte und Vorgehensweisen. Sowohl Kunststoffe als auch eine Vielzahl anderer organischer sowie anorganischer Substanzen können mit folgenden Methoden als unerlässliches Hilfsmittel für die Strukturaufklärung erfasst werden:
Folgende Aufgabenstellungen können typischerweise mit spektroskopischen Methoden verfolgt werden:
Die mechanische Prüfung ist ein wichtiges Instrument zur Produkterprobung und Qualitätssicherung. Zur Charakterisierung der mechanischen Eigenschaften von Konstruktionswerkstoffen sind Prüfverfahren wie Zugversuch, Kerbschlagbiegeversuch und Härteprüfung grundlegende und häufig verwendete Methoden. Der Einsatz von Universalprüfmaschinen ermöglicht sowohl normgerechte Prüfprozesse als auch individualisierte Bauteilprüfungen.
Beispielhaft einige in unseren Laboren realisierte Untersuchungsmethoden in der Kurzzeitprüfung:
Zusätzliche Einflussparameter auf den Kunststoff, wie beispielsweise Klima- und Medieneinflüsse, sind bereits in der Versuchskonzeption und der Vorbereitung der Probekörper zu berücksichtigen. Den mechanischen Untersuchungen sind häufig Arbeiten in den Bereichen Probenpräparation, Alterung mittels UV-Strahlung und/oder Konditionierung in Klimaschränken vorgeschaltet.
Darüber hinaus sind weitere Laborbereiche für eine Vielzahl von Langzeit- oder dynamischen Prüfungen bestens ausgestattet. In allen Laborbereichen werden Untersuchungen sowohl an Thermoplasten und Duroplasten als auch an Faserverbundwerkstoffen mit Erfahrung durchgeführt.
Die vielfältigen und aussagekräftigen Methoden der Thermischen Analyse helfen komplexe Zusammenhänge zwischen Verarbeitung, Struktur und Eigenschaften der Kunststoffe zu erkennen. Durch die Verfahren der Thermischen Analyse können Polymere identifiziert und charakterisiert werden sowie die Verarbeitungseinflüsse und Materialschädigungen erkannt werden.
Mithilfe der Thermischen Analyse werden viele für die Verarbeitung und den Gebrauch von Kunststoffprodukten wichtige Eigenschaften ermittelt. Dazu zählen:
Die Methoden werden für unterschiedliche Materialien eingesetzt: Thermoplaste, Duroplaste Elastomere, Harz- und Klebstoffsysteme, Lebensmittel, Pharmazeutika, Baustoffe und viele mehr.
Die Kenntnis des Fließverhaltens von Kunststoffschmelzen, Kautschuk- bzw. Silikonmassen und auch der Viskosität von Harzsystemen ist essentiell, um die Verarbeitungsprozesse zielgerichtet auslegen zu können. Neben dem Betrag der Viskosität können auch deren elastische und viskose Anteile ermittelt werden. Diese Option bringt zum Beispiel wichtige Informationen darüber, in welchem Maße eine Kunststoffschmelze unter Scherung mit einer Temperaturerhöhung reagiert. Da die Viskosität eines Kunststoffs das Produkt vieler Detaileigenschaften (Molekulargewichtsverteilung, Verzweigungsgrad, Additivierung) ist, lassen sich mit rheometrischen Methoden auch Chargenschwankungen vergleichend nachweisen.
Insbesondere oszillatorische Messungen bieten hierbei viele Möglichkeiten der Werkstoffcharakterisierung. Vorversuche zur Findung eines geeigneten individuellen Betriebspunktes des Wechselwirkungssystems aus Rheometer und Werkstoff sind hierbei erforderlich.
Die Bestimmung von physikalischen Eigenschaften sowie Werkstoffcharakteristika ist in der Kunststoff-Analytik überall da von Bedeutung, wo es um Verfahrensauslegung, Prozessauslegung und/oder Prozessparameter geht. Ferner dienen diese Informationen einem tieferen Verständnis des Materials, welches besonders für die Vorhersage des Verhaltens in der Anwendung notwendig sind. Somit beinhalten die physikalischen Eigenschaften eines zu verarbeitenden Materials wie beispielsweise deren Schwindungsverhalten sowie die dem Material innewohnende (Rest-)Feuchtigkeit wichtige Auskünfte über das Polymer bzw. reaktive Systeme. Hinsichtlich anvisierter Anwendungsmöglichkeiten sind einerseits Faktoren wie die Wärmeleitfähigkeit und Barriere-Eigenschaften von hoher Bedeutung. Andererseits können Effekte wie das Benetzungsverhalten gegenüber hydrophilen/hydrophoben Medien sowie Farb- und Glanzunterschiede im Vordergrund stehen.
Beispiele einiger physikalischer Eigenschaften sind:
Auch im Bereich der Fehler- und Schadensanalyse kann die Bestimmung der physikalischen Eigenschaften eines Bauteils und/oder des Ausgangsmaterials zur Klärung des Versagens bzw. der Versagensursache beitragen.